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Abstract. We propose an algorithm computing explicit generating functions of the stable
multiplicities of irreducible representations(n − |µ|, µ) of Sn arising in the restriction from
U(n), O(n) orO(n−1) to Sn of an irreducible tensor representation of the unitary or orthogonal
group; i.e. we compute the multiplicities in a way which is independent ofn andm, the weight
of the label(m− |λ|, λ) of the corresponding irrep.

1. Introduction

The symmetric groupSn plays an important role in those areas of physics and chemistry
involving permutational symmetry such as in the implementation of the Pauli exclusion
principle in constructing totally antisymmetric wavefunctions for identical fermions. Such
applications arise, for example, in the classification ofn-electron states and in symplectic
models of nuclei and quantum dots [4]. These applications frequently require the resolution
of symmetrized powers of the irreducible tensor representations ofSn. This situation arises
in the case of evaluating the branching coefficients for the group–subgroup restrictions
U(n) ↓ Sn, O(n) ↓ Sn andO(n− 1) ↓ Sn. In these cases the coefficients involve the inner
plethysms [11, 13]:

U(n) ↓ Sn {λ} ↓ 〈1〉 ⊗ {λ/M} (1)

O(n) ↓ Sn [λ] ↓ 〈1〉 ⊗ {λ/G} (2)

O(n− 1) ↓ Sn [λ] ↓ 〈1〉 ⊗ {λ/C} (3)

whereM,C andG are infinite series ofS functions [6, 5] and the reduced notation forSn
[10, 7, 8, 14] is exploited.

The evaluation of the above inner plethysms is the key problem considered herein.
Most previous formulations have involved Littlewood’s methods [6, 7, 12], see also [1, 2]
for the special casesλ = (n), (1n), for obtaining the complete content of the plethysm
whereas interest often lies in the computation of specific coefficients. To that end it is
highly desirable to be able to construct generating functions to yield the multiplicities of
irreducible representations(n − |µ|, µ) of Sn. The classical methods allow us to given-
independent results, for example for the restriction of an irrep{λ} of U(n) to Sn. Here we
show that it is also possible to obtain branching formulae which are also independent of the
greatest partλ1 of λ. We construct explicit algorithms for obtaining the relevant generating
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functions using the formalism of vertex operators in the same way as in [14, 3, 13] and
demonstrate the procedure with several illustrative examples.

2. Notations and background

Our standard reference for symmetric functions will be [9] and we will adopt its notations as
in [13]. A Schur function is denoted by{λ} or by sλ, depending on whether it is interpreted
as a character ofU(n) or as an operator. The inner plethysm(λ)⊗{µ} is denoted either by
ŝµ(sλ) or by sµ∧sλ. We recall that symmetric functions of a formal difference of variable
sets are defined bypk(X − Y ) = pk(X)− pk(Y ) and that the set{1, z, z2, . . .} is identified
with the power series(1− z)−1.

An algebraic formulation of Littlewood’s reduced notation for symmetric functions can
be given by considering a particular case of a vertex operator

0zsλ :=
∑
n∈Z

s(n,λ)z
n.

That is, Littlewood’s reduced notation〈λ〉 has to be interpreted as the infinite series01sλ.
We sketch some of its basic properties and refer the reader to [14, 3, 13] for example, for
details (see also [9, in particular example 29, pp 95ff, example 3, pp 75f, example 25,
pp 91ff]).

The adjoints (with respect to Hall’s inner product) of multiplication of symmetric
functions by

σz(X) :=
∑
n>0

hn(X)z
n and λz(X) :=

∑
n>0

en(X)z
n

the generating functions for the complete symmetric and elementary symmetric functions,
are algebra automorphismsDσz,Dλz and we have

Dσz ◦Dλ−z = id.

In Lambda-ring notation these operators can be described as

DσzF (X) = F(X + z) Dλ−zF (X) = F(X − z)
for any symmetric functionF . This means that for the power sums we have

Dσzpk(X) = pk(X)+ zk Dλ−zpk(X) = pk(X)− zk

and for Schur functions

Dσzsλ(X) =
∑
i>0

sλ/(i)(X)z
i Dλ−z sλ(X) =

∑
i>0

sλ/(1i )(X)(−z)i .

Finally, the vertex operator has a factorization

0zF (X) = σz(X)Dλ−1/zF (X) = σz(X)F (X − 1/z) (4)

a formula, which we will use in the sequel.

3. Stable inner-plethysm multiplicities

3.1. The result

In this section, we address the problem of computing in ann and m independent way
the multiplicity of an irreducible representation(n − |µ|, µ) of Sn in the inner plethysm
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〈1〉 ⊗ {m − |λ|, λ}. This will be applied to the calculation of the branching coefficients of
(1)–(3) in the forthcoming sections.

We know that Littlewood’s reduced notation allows us to expand the inner plethysm
〈1〉 ⊗ {ν} as a linear combination of stable characters:

〈1〉 ⊗ {ν} =
∑
µ

dµ〈µ〉 (5)

so that for anyn such thatn − |µ| > µ1, the multiplicity of the irrep(n − |µ|, µ) of Sn
will always be equal todµ.

Here, we go one step further and allow the first partν1 of ν to be arbitrary. That is, we
setν = (ν1, λ), and we consider the generating function

Fλ(z) :=
∑
n∈Z
〈1〉 ⊗ {n, λ}zn :=

∑
n∈Z

znŝ(n,λ)〈1〉 :=
∑
µ

cλµ(z)〈µ〉. (6)

Then, thecλµ(z)ϕ(z), whereϕ(z) =∏k>1(1− zk), are rational functions which can be
explicitly computed by the procedure described below.

For example, withλ = (2, 1), we obtaincλµ(z) = (1− z)ϕ(z)−1aλµ(z), with

a21,0(z) = z4

(1− z3)(1− z)2 (7)

a21,1(z) = 1− 3z + 2z2+ 3z4− 2z5− z6+ z7

z2(1− z)3(1− z3)
(8)

a21,2(z) = (1+ z − z3)z2

(1− z)4(1− z3)(1+ z) (9)

a21,11(z) = (1+ z − z3− z4+ z5)z2

(1− z)3(1− z2)(1− z3)
(10)

and forµ = (4, 2, 2), a21,422(z) is equal to

z6(z16− z14− 2z13− 2z12+ z11+ z10+ 3z9+ z8+ z7+ 2z6− z4− 3z3− z2− 1)

(z6− 1)(z + z2+ 1)(z − 1)6(z2− 1)3(z3− 1)(z4+ z3+ z2+ z + 1)
. (11)

Taking the Taylor expansion of the latter up to order 10, we get that the multiplicity of
(30, 4, 2, 2) in the inner plethysm(37, 1)⊗ {10, 2, 1} is equal to 125.

Similarly we find that the multiplicity of(31, 3, 3, 2, 1) in (39, 1) ⊗ {30, 4, 3, 2, 1} is
equal to 309 727 790 880.

3.2. Derivation of the generating functions

Using the vertex operator formula (4)∑
n∈Z

zns(n,λ) = 0zsλ = σz(X)sλ
(
X − 1

z

)
(12)

and taking into account the inner plethysm series (cf [1])

σ̂z〈1〉 =
∑
n>0

ĥn〈1〉zn = (1− z)σ1

(
X

1− z
)
= (1− z)

∏
k>0

(∑
m>0

zkmhm

)
(13)

we have

Fλ(z) =
[
σz(X)sλ

(
X − 1

z

)]∧
〈1〉
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= σ̂z〈1〉 ∗ sλ
(
X − 1

z

)∧
〈1〉

= (1− z) σ1

(
X

1− z
)
∗ U (14)

whereU := [sλ(X − 1
z
)]∧〈1〉.

For example, withλ = (2, 1) one would have

U =
(
s21− 1

z
s21/1+ 1

z2
s21/12

)∧
〈1〉 = ŝ21〈1〉 − 1

z
(〈1〉 ∗ 〈1〉)+ 1

z2
〈1〉.

To evaluate such an expression, we use Littlewood’s formula, which gives the result as a
combination of stable characters〈µ〉 = σ1Dλ−1sµ = σ1sµ(X − 1), and we keep apart the
factor σ1, writing U = σ1H .

In our example, we obtain

ŝ21〈1〉 = 〈1〉 ⊗ {21} = 〈21〉 + 〈2〉 + 〈11〉 + 〈1〉 = σ1s21 (15)

ŝ21/1〈1〉 = 〈1〉 ∗ 〈1〉 = 〈2〉 + 〈11〉 + 〈1〉 + 〈0〉 = σ1 · (s2+ s11− s1+ 1) (16)

ŝ21/11〈1〉 = 〈1〉 = σ1 · (s1− 1) (17)

and, finally,

U = σ1 ·
(
s21− 1

z
(s2+ s11− s1+ 1)+ 1

z2
(s1− 1)

)
= σ1H. (18)

Next, we expand the internal product (14), taking into account the property

σ1

(
X

1− z
)
∗ F(X) = F

(
X

1− z
)

which gives

Fλ(z) = (1− z) σ1

(
X

1− z
)
∗ U(X)

= (1− z)U
(

X

1− z
)

= (1− z) σ1

(
X

1− z
)
H

(
X

1− z
)
. (19)

Now we extract a vertex operator by writing

σ1

(
X

1− z
)
= σ1(X)σ1

(
zX

1− z
)

and (note thatDλ−1 ◦Dσ1 = id)

σ1

(
zX

1− z
)
H

(
X

1− z
)
= Dλ−1σ1

(
z(X + 1)

1− z
)
H

(
X + 1

1− z
)

= σ1

(
z

1− z
)
Dλ−1

[
σ1

(
zX

1− z
)
H

(
X + 1

1− z
)]
.

Thus,

Fλ(z) = (1− z)σ1

(
z

1− z
)
01

[
σ1

(
zX

1− z
)
H

(
X + 1

1− z
)]

=
∏
i>2

1

1− zi 01

[
σ1

(
zX

1− z
)
H

(
X + 1

1− z
)]
. (20)
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If we write

σ1

(
zX

1− z
)
H

(
X + 1

1− z
)
=
∑
µ

aλµ(z)sµ

then

Fλ(z) =
∑
µ

cλµ(z)〈µ〉

with

cλµ(z) = aλµ(z)
∏
i>2

1

1− zi .

We can now computeaλµ(z) using properties of the scalar product and adjoint operators:

aλµ(z) =
〈
sµ, σ1

(
zX

1− z
)
H

(
X + 1

1− z
)〉

=
〈
sµ,

∏
k>1

σzk(X)H

(
X + 1

1− z
)〉

=
〈
sµ

(
X + z

1− z
)
, H

(
X + 1

1− z
)〉
. (21)

Now we expandH(X+1
1−z ) by replacing each power sumpk in the expansion ofH by

(pk + 1)/(1− zk). Let the rational functionsdλα(z) be defined by

H

(
X + 1

1− z
)
=
∑
α

dλα(z)sα(X). (22)

Now,

sµ

(
X + z

1− z
)
=
∑
α⊆µ

sα(X)sµ/α

(
z

1− z
)

so that

aλµ(z) =
∑
α

dλα(z)sµ/α

(
z

1− z
)
.

For λ = (2, 1), the coefficientsd21,α(z) are given by

H

(
X + 1

1− z
)
= z

(1− z3)(z − 1)2
s3+ 1+ z2

(1− z3)(z − 1)2
s21+ z

(1− z3)(z − 1)2
s111

+ 2z − 1

z(1− z)3s2+
2z − 1

z(1− z)3s11+ 1− 3z + 2z2+ z3

z2(1− z)3 s1+ z4

(1− z3)(z − 1)2
s0.

(23)

From these expressions, we obtain the required generating functions.



6968 T Scharf et al

3.3. Summary of the algorithm

To compute the generating functioncλµ(z):
(1) Evaluatef = sλ(X− 1

z
), either by expandingsλ on the basispα and replacing each

power sumpk by pk − z−k, or by the more efficient formula

sλ

(
X − 1

z

)
=

`(λ)∑
r=0

(
−1

z

)r
sλ/1r (X).

(2) ComputeU = f̂ 〈1〉 as a linear combination of stable characters〈µ〉 by means of
Littlewood’s formula, and write it in the formU = σ1H , taking into account the fact that
〈µ〉 = σ1sµ(X − 1).

(3) EvaluateH(X+1
1−z ), for example by expandingH in terms of power sums, and

replacing eachpk by (pk + 1)/(1− zk).
(4) Take the scalar product of the previous expression with

sµ

(
X + z

1− z
)
=
∑
ν⊆µ

sν

(
z

1− z
)
sµ/ν(X)

(a closed formula forsν
(
z

1−z
)

can be found for example in [9, example 2, p 45]). This
yields aλµ(z).

(5) cλµ(z) = (1− z)ϕ(z)−1aλµ(z).
The multiplicity of the irreducible representation(n − |µ|, µ) of Sn (for any n) in the

inner plethysm〈1〉 ⊗ {m, λ} is then equal to the coefficient ofzm in the Taylor expansion
of cλµ(z).

4. The restriction U (n) ↓ Sn
The well known stable branching rule forU(n) ↓ Sn is

{λ} ↓ 〈1〉 ⊗ {λ/M}
where

M = σ1 =
∏
i

1

1− xi .

To compute the branching coefficients we consider the generating series

Fλ(z) :=
∑
n∈Z
〈1〉 ⊗ {(n, λ)/M}zn :=

∑
µ

cλµ(z)〈µ〉

and rewrite it as before as

Fλ(z) = [Dσ1σzDλ−1/z sλ]
∧〈1〉

=
[
σz(X + 1)sλ

(
X − 1

z
+ 1

)]∧
〈1〉

= (1− z)−1

[
σz(X)sλ

(
X − 1

z
+ 1

)]∧
〈1〉

= σ1

(
X

1− z
)
∗ sλ

(
X − 1

z
+ 1

)∧
〈1〉.

Thus, if we defineH by

σ1H =
[
sλ

(
X − 1

z
+ 1

)]∧
〈1〉
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we arrive at

cλµ(z) =
∏
k>1

1

1− zk aλµ(z) (24)

where

aλµ(z) =
〈
sµ

(
X + z

1− z
)
, H

(
X + 1

1− z
)〉
. (25)

For λ = (2, 1), we obtain

H

(
X + 1

1− z
)
= (2z5− 3z4− 2z2+ 3z − 1)

(z2+ z + 1)(z − 1)3z2
s0+ (z

2− 3z + 1)

(z − 1)3z
s2+ (z

2− 3z + 1)

(z − 1)3z
s11

+ z

(z2+ z + 1)(1− z)3s3+
(z2+ 1)

(z2+ z + 1)(1− z)3s21

+ z

(z2+ z + 1)(1− z)3s111+ (3z
3− 8z2+ 5z − 1)

(z − 1)3z2
s1. (26)

From this we may compute

c21,11(z) = −1+ 3z2+ 15z3+ 42z4+ 102z5+ 215z6+ 425z7+ 785z8+ 1391z9

+2367z10+ 3912z11+ 6286z12+ 9884z13+ 15221z14+O(z15)

c21,211(z) = 2z2+ 10z3+ 36z4+ 104z5+ 260z6+ 587z7+ 1229z8+ 2425z9

+4558z10+ 8231z11+ 14366z12+ 24354z13+ 40247z14+O(z15)

Hence, the multiplicity of(11, 2, 1, 1) in the restriction of the irrep{12, 2, 1} of U(15)
to S15 is equal to 14 366, the coefficient ofz12 in the expansion ofc21,211(z).

5. The restriction O(n) ↓ Sn
It is known that the stable branching rule forO(n) ↓ Sn is given by [11]

[λ] ↓ 〈1〉 ⊗ {λ/G}
where

G = σ1λ−1[h2] = MC =
∏
i

1

1− xi
∏
i6j
(1− xixj ).

We want to compute the coefficientscλµ(z) of the generating series

Fλ(z) :=
∑
n∈Z
〈1〉 ⊗ {(n, λ)/G}zn :=

∑
µ

cλµ(z)〈µ〉.

We have

Fλ(z) = [Dσ1Dλ−1[h2]σzDλ−1/z sλ]
∧〈1〉

=
[
Dλ−1[h2]σz(X + 1)sλ

(
X − 1

z
+ 1

)]∧
〈1〉

= (1− z)−1

[
Dλ−1[h2]σz(X)sλ

(
X − 1

z
+ 1

)]∧
〈1〉.

We now use the following properties:
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Lemma 5.1.For any symmetric functionsf, g,

Dλ−1[h2](fg) = µ ◦ (Dλ−1[h2] ⊗Dλ−1[h2]) ◦Dδλ−1(f ⊗ g)
whereδ is the comultiplicationδ(pk) = pk ⊗ pk (i.e. δ(f ) = f (XY), denoted by1∗ in [9,
p 128]) andµ the multiplication operatorµ(f ⊗ g) = fg. (Here⊗ means tensor product,
not plethysm).

Proof. Let h be an arbitrary symmetric function. Using the duality between multiplication
and comultiplication, we have the following sequence of transformations of the scalar
product

〈Dλ−1[h2](fg), h〉 = 〈f ⊗ g,1(λ−1[h2]h)〉 = 〈f ⊗ g,1(λ−1[h2])1(h)〉
= 〈f ⊗ g, λ−1[h2⊗ 1+ h1⊗ h1+ 1⊗ h2]1(h)〉
= 〈Dδλ−1(f ⊗ g), λ−1[h2] ⊗ λ−1[h2]1 · (h)〉
= 〈µ ◦ (Dλ−1[h2] ⊗Dλ−1[h2]) ◦Dδλ−1(f ⊗ g), h〉.

�

Lemma 5.2.For any symmetric functionf ,

Dδλ−1σz ⊗ f = σz ⊗ f (X − z).
Proof. Taking into account the fact thatDsνhn = 0 if `(ν) > 1 andDsr hn = hn−r , we
have

Dδλ−1(X)σz(X)⊗ f (X) =
∑
r>0

(−1)rDsr σz(X)⊗Ds1r f (X)

= σz(X)⊗Dλ−z(X)f (X) = σz(X)⊗ f (X − z).
�

Also, from the well-known expansion ofλ−1[h2] (cf [9, example 9, p 78]) we obtain
λ−1[h2] = 1− h2+ Schur functions indexed by partitions with more than one part, hence

Dλ−1[h2]σz = (1− z2)σz (27)

which implies that

Fλ(z) = (1− z2)

(1− z) σ̂z〈1〉 ∗ U

where

U :=
[
Dλ−1[h2]sλ

(
X − 1

z
+ 1− z

)]∧
〈1〉 = σ1H.

Thus, as in the previous section,

cλµ(z) = (1− z2)
∏
k>1

1

1− zk aλµ(z) (28)

where

aλµ(z) =
〈
sµ

(
X + z

1− z
)
, H

(
X + 1

1− z
)〉
. (29)
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On the exampleλ = (2, 1), we obtain

c21,11(z) = −1+ z2+ 6z3+ 17z4+ 41z5+ 84z6+ 163z7+ 294z8+ 510z9+ 850z10

+1378z11+ 2172z12+ 3356z13+ 5080z14+O(z15)

c21,2(z) = 2z2+ 6z3+ 18z4+ 41z5+ 86z6+ 165z7+ 301z8+ 522z9+ 876z10

+1422z11+ 2253z12+ 3487z13+ 5297z14+O(z15)

c21,221(z) = z2+ 3z3+ 12z4+ 36z5+ 95z6+ 221z7+ 478z8+ 966z9+ 1857z10

+3416z11+ 6065z12+ 10434z13+ 17480z14+O(z15)

c21,5211(z) = z7+ 6z8+ 25z9+ 86z10+ 252z11+ 663z12+ 1599z13+ 3600z14+O(z15)

so that for example, the multiplicity of (95211) in the restriction of the irrep [13, 2, 1] of
O(18) to S18 is equal to 1599.

6. The restriction O(n− 1) ↓ Sn
The series to be computed here is

Fλ(z) =
∑
n∈Z
〈1〉 ⊗ {(n, λ)/C} = [Dλ−1[h2]σzDλ−1/z sλ]

∧〈1〉 (30)

A calculation similar to the one of the preceding section shows that

Fλ(z) = (1− z2)

[
σz ·Dλ−1[h2]sλ

(
X − 1

z
− z

)]∧
〈1〉 (31)

and writing as above

U =
[
Dλ−1[h2]sλ

(
X − 1

z
− z

)]∧
〈1〉

in the formU = σ1H we have

cλµ(z) = (1− z)(1− z2)
∏
k>1

1

1− zk aλµ(z) (32)

whereaλµ(z) is once again given by

aλµ(z) =
〈
sµ

(
X + z

1− z
)
, H

(
X + 1

1− z
)〉
. (33)

For example, withλ = (2, 1)

c21,11(z) = z3+ 3z4+ 7z5+ 15z6+ 29z7+ 52z8+ 89z9+ 147z10+ 235z11

+366z12+ 558z13+ 834z14+O(z15)

c21,211(z) = z2+ 4z3+ 11z4+ 26z5+ 56z6+ 111z7+ 208z8+ 372z9+ 641z10

+1070z11+ 1739z12+ 2760z13+ 4293z14+O(z15)

c21,421(z) = z4+ 3z5+ 12z6+ 37z7+ 98z8+ 231z9+ 507z10+ 1038z11

+2022z12+ 3770z13+ 6781z14+O(z15)

so that, for example, the multiplicity of(5211) in the restriction of the irrep [521] ofO(8)
to S9 is equal to 26.
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Table 1. Some multiplicities of〈µ〉 in the inner plethysm〈1〉 ⊗ {λ}.
λ 221 321 421 521 621 · · ·
µ 2 3 4 5 6 · · ·
Multiplicity 1 3 5 5 5 · · ·

λ 521 621 721 821 921 10, 2, 1 11, 2, 1 · · ·
µ 2 3 4 5 6 7 8 · · ·
Multiplicity 25 58 85 99 104 106 106 · · ·

λ 221 321 421 521 621 · · ·
µ 21 31 41 51 61 · · ·
Multiplicity 2 5 6 6 6 · · ·

λ 5, 2, 1 7, 2, 1 10, 2, 1 14, 2, 1 19, 2, 1 25, 2, 1 · · ·
µ 14 15 16 17 18 19 · · ·
Multiplicity 11 14 17 18 19 19 · · ·

7. A stability property of the coefficients cλµ(z)

The multiplicities of irreps exhibit a certain stability property, if grouped together in a
certain natural way. Let us start by looking at some concrete examples for inner plethysm.
The remarks are directly applicable to the restrictions (1)–(3), as the previous sections have
shown.

The first three examples in table 1 suggest that the sequence of multiplicities becomes
constant when increasing the first row ofλ and the first row ofµ. For example, one has
〈1〉 ⊗ 〈n21〉 ⊃ 106〈n − 3〉 for n > 10. We observe a similar stability when increasing the
first column, but then have to make shifts on the left-hand side by 1, 2, 3, 4, . . . as shown
in the fourth example.

To state the property in a precise way, suppose

〈1〉 ⊗ {m, λ} ⊃ Cmp (λ)〈p, ν〉 and 〈1〉 ⊗ {m+ q, λ} ⊃ Cm+qp+q (λ)〈p + q, ν〉. (34)

Then, the(Cm+qp+q (λ))q form a finite sequence of integers such thatC
m+q
p+q (λ) = Cm+qsp+qs (λ) for

all q > qs (andqs depends onλ andν only).
This property is shared by〈1〉⊗ {m, λ/M}, 〈1〉⊗ {m, λ/G} and〈1〉⊗ {m, λ/C}. To see

this fix λ andµ and setν := (µ2, µ3, . . .). Then it is immediate from the definitions that

cλµ(z) =
∑
z

Cmµ1
(λ)zm. (35)

Hence we only need to show a stability property of thecλµ(z) (or, equivalently, of the
aλµ(z)), whenµ1 increases. To get control on the corresponding shifts we rather consider
z−µ1cλµ(z) and will show that this expression converges as a formal Laurent series when
µ1 goes to infinity. This property is true for all the restrictions considered before, and it
can be proved by using the vertex operator method.

Let u be another indeterminate, commuting withz. Then

0usν

(
X + z

1− z
)
= σu

(
X + z

1− z
)
sν

(
X − 1

u
+ z

1− z
)

= σu
(

z

1− z
)
σu (X) sν

(
X − 1

u
+ z

1− z
)

(36)
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whence∑
i

aλ(i,ν)(z)u
i =

〈
0usν

(
X + z

1− z
)
, H

(
X + 1

1− z
)〉

= σu
(

z

1− z
) 〈
σu(X)sν

(
X − 1

u
+ z

1− z
)
, H

(
X + 1

1− z
)〉

= σu
(

z

1− z
) 〈
sν

(
X − 1

u
+ z

1− z
)
, H

(
X + 1+ u

1− z
)〉

= σu
(

z

1− z
)
Pλν(z, u) (37)

where

Pλν(z, u) :=
t∑
i=b

ri(z)u
i :=

〈
sν

(
X − 1

u
+ z

1− z
)
, H

(
X + 1+ u

1− z
)〉

(38)

is a Laurent polynomial inu with rational functions inz as coefficients.
Recall (from [9, example 5, p 27] for example) that

σu

(
z

1− z
)
=
∑
i

zi∏i
j=1(1− zj )

ui.

Therefore, to getaλ(µ1,ν), µ1 > t , i.e. the coefficient ofuµ1 in

σu

(
z

1− z
)
Pλν(z, u)

it suffices to consider the coefficient ofuµ1 in( µ1−b∑
l=µ1−t

zl∏l
j=1(1− zj )

ul
)
Pλν(z, u).

On the other hand, as a Laurent series inz, this coefficient converges to the coefficient of
uµ1 in

zµ1∏µ1
j=1(1− zj )

uµ1

( −b∑
l=−t

t lul
)
Pλν(z, u)

whenµ1 goes to infinity. Hencez−µ1cλ,µ(z) converges to the constant term (with respect
to u) in ∏

j>2

(1− zj )−1
∏
j>1

(1− zj )−1

( −b∑
l=−t

t lul
)
Pλν(z, u). (39)

If, for example, we chooseλ = (2, 1) andν := (), the empty partition, then

Pλν(z, u) = z

(1− z3)(z − 1)2
u3+ 2z − 1

z(1− z)3u
2+ 1− 3z + 2z2+ z3

z2(1− z)3 u+ z4

(1− z3)(z − 1)2

and the constant term of

z−3u−3(1+ uz + u2z2+ u3z3)Pλ,ν(z, u)

equals

z−3

(
z

(1− z3)(z − 1)2
+ 2z − 1

(1− z)3 +
1− 3z + 2z2+ z3

(1− z)3 + z4

(1− z3)(z − 1)2

)
= z−1+ 2+ 3z + z2+ z3

(1− z)2(1− z3)
.
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Finally for µ1 large enough the expansion ofz−µ1cλµ(z) up to order 7 is

z−1+ 5+ 17z + 45z2+ 106z3+ 230z4+ 467z5+ 901z6+O(z7)

(the Laurent expansion always starts withz−`(µ)). This can be interpreted as follows.
The coefficient of zq in the above expansion is the ‘stable multiplicity’ of〈µ1〉 in
〈1〉 ⊗ {µ1 + q, 2, 1}. The coefficient ofz0 is 5 in accordance with the first example of
table 1; 106, the coefficient ofz3, appears as the limit in the second example of table 1.

In the fourth example of table 1 the first column ofµ increases. We therefore set
ν := (µ′2, µ

′
3, . . .)

′, i.e. µ without its first column. As the shifts proceed by steps of

1, 2, 3, . . ., we will have to consider the limitz−(
µ′1−t+1

2 )cλµ(z), whenµ′1 tends to infinity.
Heret is a non-negative integer depending onλ andν only (cf equation (41) below). Then
everything can be proven in the same way as before by using the dual notions.

The dual version of the vertex operator is∑
i

(−1)i+1+|ν|s(i,ν ′)′ui = λ−u(X)sν
(
X + 1

u

)
. (40)

Setting

Qλν(z, u) :=
t∑
i=b

r̃i(z)u
i :=

〈
sν

(
X + 1

u
+ z

1− z
)
, H

(
X + 1− u

1− z
)〉

(41)

and recalling (e.g. from [9, example 5, p 27]) that

λ−u

(
z

1− z
)
=
∑
i

z

(
i + 1

2

)
∏i
j=1(1− zj )

(−u)i

for i →∞ only one term, namely

z

(
i + 1

2

)
∏i−t
j=1(1− zj )

(−u)i−t r̃t (z) (42)

dominates and the desired limitz−(
µ′1−t+1

2 )cλµ(z) is∏
j>2

(1− zj )−1
∏
j>1

(1− zj )−1 · r̃t (z). (43)

For example, withλ := (2, 1) andν := (), we gett := 3,

r̃t (z) := z

(1− z3)(z − 1)2

and the desired expansion is

z + 3z2+ 8z3+ 19z4+ 41z5+ 82z6+ 158z7+ 290z8+ 516z9+O(z10).

We can interpret this as follows. The coefficient ofzq gives the stable multiplicity of〈1µ′1〉
in 〈1〉⊗ {(µ′1−2

2

)+ q, 2, 1} (recall thatt = 3). The coefficient ofz4 is 19 in accordance with
table 1 above.
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8. Concluding remarks

The computation of branching coefficients ofU(n) ↓ Sn, O(n) ↓ Sn andO(n − 1) ↓ Sn
plays a key role in symplectic models of nuclei which is a combinatorially explosive
problem. Previous algorithms become computationally impossible when the number of
nucleons becomes large. The algorithms outlined in this paper overcome the limitations
of earlier algorithms and require no use of modification rules. They have the considerable
advantage over other methods of being able to yield specific coefficients rather than the
complete set of coefficients, most of which, in practical calculations, are redundant.

The stability properties of the branching coefficients and inner-plethysm multiplicities
find a natural explanation in terms of generating functions.
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