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Abstract. We propose an algorithm computing explicit generating functions of the stable
multiplicities of irreducible representationg — |u|, u) of S, arising in the restriction from
U(n), O(n) or O(n—1) to S, of an irreducible tensor representation of the unitary or orthogonal
group; i.e. we compute the multiplicities in a way which is independemt afidm, the weight

of the label(m — ||, 1) of the corresponding irrep.

1. Introduction

The symmetric groug, plays an important role in those areas of physics and chemistry
involving permutational symmetry such as in the implementation of the Pauli exclusion
principle in constructing totally antisymmetric wavefunctions for identical fermions. Such
applications arise, for example, in the classificatiomedlectron states and in symplectic
models of nuclei and quantum dots [4]. These applications frequently require the resolution
of symmetrized powers of the irreducible tensor representatio§s.ofhis situation arises

in the case of evaluating the branching coefficients for the group—subgroup restrictions
Umn)l S,,0(n) ] S,andO(n—1) | S,. In these cases the coefficients involve the inner
plethysms [11, 13]:

Un) | S (D) @A/ M} 1)
On) { Sy [A] 4 (1) ®{»/G} )
On—=1 1S, [A]14 (D) ®{4/C} ®)

whereM, C and G are infinite series of functions [6, 5] and the reduced notation f§y
[10, 7,8, 14] is exploited.

The evaluation of the above inner plethysms is the key problem considered herein.
Most previous formulations have involved Littlewood’'s methods [6, 7,12], see also [1, 2]
for the special cases = (n), (1"), for obtaining the complete content of the plethysm
whereas interest often lies in the computation of specific coefficients. To that end it is
highly desirable to be able to construct generating functions to yield the multiplicities of
irreducible representationa — |u|, u) of S,. The classical methods allow us to give
independent results, for example for the restriction of an if¢gpof U (n) to S,. Here we
show that it is also possible to obtain branching formulae which are also independent of the
greatest park; of A. We construct explicit algorithms for obtaining the relevant generating
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functions using the formalism of vertex operators in the same way as in [14, 3,13] and
demonstrate the procedure with several illustrative examples.

2. Notations and background

Our standard reference for symmetric functions will be [9] and we will adopt its notations as
in [13]. A Schur function is denoted biy.} or by s;, depending on whether it is interpreted
as a character d¥ (n) or as an operator. The inner plethys$i ® {u1} is denoted either by
5.(s,) or by s,”s;. We recall that symmetric functions of a formal difference of variable
sets are defined by, (X — Y) = p;(X) — pi(Y) and that the setl, z, z2, ...} is identified
with the power seriegl — z)~L.

An algebraic formulation of Littlewood’s reduced notation for symmetric functions can
be given by considering a particular case of a vertex operator

FZSA = Z S(n,)t)zn.

nez

That is, Littlewood’s reduced notatiofd) has to be interpreted as the infinite serigs; .
We sketch some of its basic properties and refer the reader to [14, 3, 13] for example, for
details (see also [9, in particular example 29, pp 95ff, example 3, pp 75f, example 25,

pp 91ff]).
The adjoints (with respect to Hall's inner product) of multiplication of symmetric
functions by

0o(X) =Y hy(X)2" and r(X) =) en(X)2"

n=0 n=0

the generating functions for the complete symmetric and elementary symmetric functions,
are algebra automorphisni%,., D,. and we have

Dy o D, . =id.
In Lambda-ring notation these operators can be described as
D, F(X) =F(X +2) D, F(X)=FX-2)
for any symmetric functiorf’. This means that for the power sums we have
Do.pe(X) = p(X) +2° Dy pe(X) = pr(X) — 2
and for Schur functions
Dosi(X) =) sy (X)) Di_si(X) =) s/0)(X)(—2)".

i=0 i=0
Finally, the vertex operator has a factorization
I F(X) =0.(X)D; . F(X) =0.(X)F(X — 1/2) 4)

a formula, which we will use in the sequel.

3. Stable inner-plethysm multiplicities

3.1. The result

In this section, we address the problem of computing innaand m independent way
the multiplicity of an irreducible representatiqn — ||, u) of S, in the inner plethysm
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(1) ® {m — |A|, A}. This will be applied to the calculation of the branching coefficients of
(1)—(3) in the forthcoming sections.

We know that Littlewood’s reduced notation allows us to expand the inner plethysm
(1) ® {v} as a linear combination of stable characters:

1) ® (v} = Zd ()

so that for anyn such thatn — || > w1, the multiplicity of the irrep(n — ||, u) of S,
will always be equal tai,.

Here, we go one step further and allow the first parof v to be arbitrary. That is, we
setv = (vg, A), and we consider the generating function

Fi@) =) (1) ®{n, A" =Y "8 (l) =Y cau(@){n). (6)
nez nez n
Then, thec,, (z)¢(z), wheregp(z) = ]_[,@1(1 — 7Ky, are rational functions which can be
explicitly computed by the procedure described below.
For example, with. = (2, 1), we obtainc,,(z) = (1 — 2)¢(z) ta,,.(z), with

Z4

— B 7
az10(2) 1- A2 (7)
1-37 4272434 —275— 78477
= 8
a11(z) 20— i1- 2 (8
14z — 7372
) = 9
@20 = A= o) ®)
L+z 73—+ 7572
= 10
a111(z) 1-2%1_290- (10)
and foru = (4, 2, 2), as1422(z) 1S equal to
6(z16 ;14 _ 18 _p 124 11 10384 B 7406 4_33_.2_1) wn

=D +22+DE-D8:2 - D32 -D(*+28+22+z2+1)
Taking the Taylor expansion of the latter up to order 10, we get that the multiplicity of
(30,4, 2, 2) in the inner plethysm37, 1) ® {10, 2, 1} is equal to 125.
Similarly we find that the multiplicity of(31,3,3,2,1) in (39,1) ® {30,4,3,2, 1} is
equal to 309727 790 880.

3.2. Derivation of the generating functions

Using the vertex operator formula (4)

ZZ”S(n,x) =I5 =0, (X)s, (X — i) (12)

nez

and taking into account the inner plethysm series (cf [1])

= ha(l)z (1—z)c71( )(1—Z)H<sz”’h> (13)

n=>0 k=0 “\m=>0
we have
l A
F,(z) = [GZ(X)SA (X - z)} (1)
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= 6:(1) x5, <X - 1) (1

Z
X
=(1-2)o1 <> * U (14)
1—z2

whereU := [s,(X — D] ().
For example, withh. = (2, 1) one would have

1 1 A 1 1
U= <S21 — —So11 + 2821/12) (1) = 521(1) — —((1) * (1)) + ().
z z z z

To evaluate such an expression, we use Littlewood’s formula, which gives the result as a
combination of stable charactetg) = 01D, _,s, = o15,(X — 1), and we keep apart the
factor oy, writing U = o1H.

In our example, we obtain

521(1) = (1) ® {21} = (21) + (2) + (11) + (1) = 01521 (15)
$21/1(1) = (1) x (1) = (2) + (1) + (1) +(0) =01 - (52 +s11 — 51+ 1) (16)
§21121(1) = (1) = o01- (51— 1) (17)
and, finally,
1 1
U=61-<521—Z(sz+s11—s1+1)+zz(s1—1)) =o1H. (18)

Next, we expand the internal product (14), taking into account the property

7X F(X)=F X

Ul<1—2>* 0= <1—Z)

F,(z)=@0-2z)o1 (X
1—z2

)
:(1—z)U<1)_(Z)
—a-aa (i )u () (19)

Now we extract a vertex operator by writing

X zX
o1 (].—Z> = 01(X)o; (].—Z)

and (note thai, , o D,, =id)
zX X\ dX+1D), (X+1
01(1—Z)H(1—Z)_DL101( 1-z )H<1—Z)
b4 zX X+1
=or( ) oo (5) 1 (320)]
X X+1
rirmacom ()2 (3]
1 zX X+1
=i>21_zirl[al(l_z)y(l_zﬂ. (20)

which gives

* U(X)

Thus,
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If we write
X X+1
o <1Z— z> " < 1-—¢ ) B XM:aM(Z)Sﬂ
then
F) =) cu@)(w)
"
with
1
@ =an@ [ =2

i>2

We can now compute; , (z) using properties of the scalar product and adjoint operators:
zX X+1
() = <sw o (1— z) " ( 1-z )>
X+1
=(s. | |oxx)H <)>

z X+1
= X H . 21
<S“< +1—Z)’ (1—Z>> )

Now we expandH(’l%l) by replacing each power sumy in the expansion ofH by
(pr + 1)/ (L —Z5). Let the rational functiond,.(z) be defined by

X+1
H<1jz> =2a:dm(1)sa(x). (22)
Now,
S (x + 1;) =Y s (X)spsa <1Z_Z>
aCp
so that

aku(z) = Zdla(z)su/a <1iz> .

For A = (2, 1), the coefficientsiz1 4 (z) are given by

H<X+l>_ Z o0t 1477 5or + z s
1-z) A-2Hz-12°" 1-3-122 " A-3)-p2 ™
2z—1 2z -1 1-3:+2:2+7°8 24

51+

1- 23— 127
(23)

+ +
z(1— z)3s2 z(1— Z)3S11 z2(1-12)3

From these expressions, we obtain the required generating functions.
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3.3. Summary of the algorithm

To compute the generating functief, (z):
(1) Evaluatef = s, (X — %), either by expanding, on the basig, and replacing each
power sump; by p, — z 7%, or by the more efficient formula

1 (1) 1 r
S (X — Z> = Z <—Z) S)L/j_r(X).

r=0
(2) ComputeU = f(1) as a linear combination of stable charactgrs by means of
Littlewood's formula, and write it in the forni/ = o1 H, taking into account the fact that
(n) = Ols[L(X -1.
3) EvaluateH(’{%Zl), for example by expanding? in terms of power sums, and
replacing eactp, by (px + 1)/(1 — z5).
(4) Take the scalar product of the previous expression with

Sp (X + 1iZ> = ZS\; <1iz> S/l./U(X)

vCeu

(a closed formula for, (1) can be found for example in [9, example 2, p 45]). This
yields a;, (2).

(5) cu(@) = (1 — 2)9(@) . (2).

The multiplicity of the irreducible representatidn — ||, u) of S, (for anyn) in the
inner plethysm(1) ® {m, A} is then equal to the coefficient af* in the Taylor expansion
Of C;LM(Z).

4. The restriction U(n) | S,

The well known stable branching rule fér(n) | S, is
A (D) e {a/M}

where
M=o =[]
R 1—x,-'

To compute the branching coefficients we consider the generating series
Fi@) =) (1) @ {(n, 2)/M)z" ==Y cau(2){p)
"

nez

and rewrite it as before as
F(z) = [Dalo'zD)\,l/js)\]/\<l>

_ [az<x LD, (x 1. 1)] )
Z

1-2)t [mxm (X - % + 1)] (1)

=Ul< X )* SA(X—:L—{-:L) (1)
1—¢ z

Thus, if we defineH by

ot <o (- 2e1)]
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we arrive at

1
C/W(Z) = l_[ 1—7216 (& (z) (24)

k>1

oo e02) (1)

For A = (2, 1), we obtain

H<x+1> _ @3t o243 - (P-%4D (P-4
1-z) 7 @424z -1%2 °7 z-1% T (z-13%
Z 2+ 1)
+ 3 3%3 2
(z*+z+1DA-2) (Z*+z+DA-2)
z (3z2° -8z +5:—1)
+ 5 35111 3.2
Z°+z+D(1-2) (z — 13z
From this we may compute

c2111(z) = =1+ 322 + 15z% + 42:% 4+ 102° + 21%° + 4257 + 78%® + 1391°
+2367%10 4 3912 + 628612 + 9884 1% + 1522114 + O(z*®)

c21011(2) = 222 4+ 1073 + 3624 + 104 + 260:% + 5877 + 12298 + 2425°
+455& 10 + 82311t + 1436612 + 243543 + 40247 + Oz

Hence, the multiplicity of(11, 2, 1, 1) in the restriction of the irreg12, 2, 1} of U (15)
to S15 is equal to 14 366, the coefficient of? in the expansion 0f21211(z).

where

S11

3521

S1. (26)

5. The restriction O(n) | S,

It is known that the stable branching rule for(n) | S, is given by [11]
(] ) (1) ®{*/G}

where

1
G =0 alh] =MC=]] - [[@-xixp.

i<j
We want to compute the coefficients, (z) of the generating series

Fi@ =) (D ®{n,1)/G)" =) eu@n).
I

nez

We have

F;.(2) = [Dg, Dy _yn)0: Dy, 51" (1)

= |:DA1[h2]Uz(X + 1)y (X — % + 1>i| (1)

1 A
=(1- Z)_l I:Dk_l[hz]O'Z(X)SA (X — z + 1>i| (1).

We now use the following properties:
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Lemma 5.1For any symmetric functiong, g,

D _11ny) (f8) = 1 0 (Di_yny) ® Di_y[ny)) © Dsy (f ® &)

wheres is the comultiplications (px) = pr ® pr (i.e.8(f) = f(XY), denoted byA* in [9,
p 128]) andu the multiplication operaton(f ® g) = fg. (Here® means tensor product,
not plethysm).

Proof. Leth be an arbitrary symmetric function. Using the duality between multiplication
and comultiplication, we have the following sequence of transformations of the scalar
product

= (f ® g, A(r-a[ha]h)) = (f ® g, A(A_a[h2]) A(h))
=(fRg A a[h®1+h1®h1+ 1R ho]A(h))

= (Dsi_,(f ® g), A-1[h2] ® A_a[h2] A - (h))

= (0 (Diy_y[ny) ® Di_yin)) © Das, (f ® ), h).

(Dy_s1h21 (f8) h)

Lemma 5.2For any symmetric functiory,
Dék,lo—z ® f =0;® f(X - Z)-

Proof. Taking into account the fact thdd, #, = O if £(v) > 1 and D, h, = h,_,, we
have

Dsy_,x)0:(X) ® f(X) = Z(_l)rDs,-Gz(X) ® Dy, f(X)

r=0

=0.(X)®D)_xf(X)=0.(X)® f(X —2).
O

Also, from the well-known expansion of_4[4,] (cf [9, example 9, p 78]) we obtain
A_1[h2] = 1 — hp+ Schur functions indexed by partitions with more than one part, hence

Diyf)0; = (1= z%)0; @7
which implies that

2
((11 _ZZ))@(l) «U

Fi(z) =
where
1 N
U .= I:D)»llhzls)» <X - E +1-— Z)] (1) = o1H.
Thus, as in the previous section,

1
@ =A== @ (28)
k=1

aw(z)=<sﬂ (X+1fz>,H(}1(le)>. (29)

where
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On the example. = (2, 1), we obtain

cor11(z) = =1+ 2% + 623 + 172% + 4125 + 8475 + 16% 7 + 294:8 + 51Q;° + 850 *°

+137& ' + 217212 4+ 33512 + 50801 + O(z %)

Co12(2) = 222 + 62° + 18* + 4125 + 86¢° + 1657 + 301z° + 522 ° + 876:1°

+14221 4 225312 + 34871% 1+ 52971 + O(z %)

c21201(2) = 22 + 323 + 1204 + 367° 4 9576 + 22177 + 47&8 + 966:° + 1857%1°

+3416M + 606512 + 1043412 + 1748Q 1 + O(z )

6971

c215211(2) = 2 + 628 + 25¢° + 8610 + 2521 + 6612 4 159% 12 + 360014 + O(z1%)

so that for example, the multiplicity of (95211) in the restriction of the irrep, £13] of

0(18) to S1g is equal to 1599.

6. The restriction O(n — 1) | S,

The series to be computed here is
Fi(x) =) (1) ®{(n,1)/C} = [Ds_ypny0:D;_,.5:]" (1)
nez

A calculation similar to the one of the preceding section shows that

Z

1 A
F(z)=(1-2% |:Gz Dy i[ho) 52 (X - - - Z)} (1)

and writing as above

1 N
U= [Dxllhz]sx (X - Z)} (1)

in the formU = o1 H we have

1
1—zFk

@ =0-A-A]]

k>1

au(2)

wherea,, (z) is once again given by

X+1
= (0 5) (1))

For example, withh = (2, 1)

co111(2) = 25+ 34 + 725+ 15:% + 2977 + 52:8 + 89;° 4 147,10 4 2351
+366Z12+ 558Zl3+ 834Z14+ O(ZlS)

c21211(2) = 22 + 423 + 112* + 265 + 5678 + 1117 + 20&°8 + 372%° + 641710

+107@M + 173912 + 276Q: 2 + 4293 + O(z*®)
c21421(2) = 2%+ 32° 4+ 12:5 + 377 + 98:8 + 231:° + 507:1° + 1038 *
4202212 + 377Q 2 + 67811 + O(z1%)

(30)

(1)

(32)

(33)

so that, for example, the multiplicity ab211) in the restriction of the irrep [521] 0 (8)

to Sg is equal to 26.
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Table 1. Some multiplicities of(u) in the inner plethysm1) ® {A}.

A 221 321 421 521 621

m 2 3 4 5 6

Multiplicity 1 3 5 5 5

A 521 621 721 821 921 12,1 1121
m 2 3 4 5 6 7 8
Multiplicity 25 58 85 99 104 106 106
A 221 321 421 521 621

n 21 31 41 51 61

Multiplicity 2 5 6 6 6

A 521 7,21 1021 1421 1921 2521

w 14 1° 16 17 18 1°

Multiplicity 11 14 17 18 19 19

7. A stability property of the coefficients cy,(2)

The multiplicities of irreps exhibit a certain stability property, if grouped together in a
certain natural way. Let us start by looking at some concrete examples for inner plethysm.
The remarks are directly applicable to the restrictions (1)—(3), as the previous sections have
shown.

The first three examples in table 1 suggest that the sequence of multiplicities becomes
constant when increasing the first row ofand the first row ofu. For example, one has
(1) ® (n21) D 106(n — 3) for n > 10. We observe a similar stability when increasing the
first column, but then have to make shifts on the left-hand side,l2y3 4, ... as shown
in the fourth example.

To state the property in a precise way, suppose

(1) ® {m, 1} D C" (W {p, v) and () ®{m+q, A DCoIGNp+q,v). (34)

Then, the(C, (1)), form a finite sequence of integers such ti4{7 () = C}\" (») for
all g > ¢, (andg, depends on. andv only).
This property is shared bjl) ® {m, »/M}, (1) ® {m, 1/ G} and (1) ® {m, A/C}. To see

this fix A andu and setv := (ug, us, ...). Then it is immediate from the definitions that

can(2) =Y Ch ()™ (35)

Hence we only need to show a stability property of thg(z) (or, equivalently, of the
a;,(z)), whenpu increases. To get control on the corresponding shifts we rather consider
z "¢, (z) and will show that this expression converges as a formal Laurent series when
w1 goes to infinity. This property is true for all the restrictions considered before, and it
can be proved by using the vertex operator method.

Let u be another indeterminate, commuting withThen

Z z 1 z
Fuv X P — Oy X v X ——
s< +1—Z> a( +1_Z>s< u+l—z>
1
—o (o) (X =4 - (36)
1—z u 11—z
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Y an@u’ = <Fusu <X+ 1;) <X+1>>
( ) u 1Zz>’H()1(jzl>>
ca () (- 2 ) (F)
()

Po(z, 1) 37)

where

: . 1 z X+1+4u
Poy(z, u) ::;ri(z)u = <s,, (x-u+ 1_1),H(1_Z>> (38)

is a Laurent polynomial i with rational functions in; as coefficients.
Recall (from [9, example 5, p 27] for example) that

i

Z Z i
oy (l— Z) - 21:71_[;:1(1_ Z])M .

Therefore, to getr u,.v), 1 = ¢, i.€. the coefficient ofi** in

Oy <1iZ) PAV(ZJ/t)

it suffices to consider the coefficient oft in

u1—b Zl
(52 nen
I=p1—t Hj:l(l - Zj)

On the other hand, as a Laurent serieg itthis coefficient converges to the coefficient of

uttin
e
1

I=—t

when uq goes to infinity. Hence ~*i¢, ,(z) converges to the constant term (with respect
to u) in

—b
[Ta-H"]a- zf)‘l( > r’uf)PM(z, ). (39)

j=2 j>1 I=—t
If, for example, we choosg = (2, 1) andv := (), the empty partition, then
z s 2—-1 , 1-3+2%+73 z4
u” + u u—+
(1-23(z — 1)2 z(1—z)3 72(1—2)3 (1-2z3(z — 1)2
and the constant term of
Bu A+ uz +uP? +uPB) P (2 0)

PAU(Z’ M) =

equals
s z 2z-1  1-3z+22+78 !
< 3 2T st 3 + 3 2
A-23E=-D* (A-2) 1-2) 1-29z-1
1+ 2432 +224 28
(1-2)%2(1—-2z3)
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Finally for 11 large enough the expansion of#ic;, (z) up to order 7 is
2+ 5+ 177 + 45:% + 1063 + 23Q* + 4672° + 901:° + O(z")

(the Laurent expansion always starts with‘™). This can be interpreted as follows.

The coefficient ofz? in the above expansion is the ‘stable multiplicity’ @fi1) in

(1) ® {1 + g, 2, 1). The coefficient ofz° is 5 in accordance with the first example of

table 1; 106, the coefficient of}, appears as the limit in the second example of table 1.
In the fourth example of table 1 the first column pfincreases. We therefore set

v = (uh, s, ...), i.e. w without its first column. As the shifts proceed by steps of

1,2, 3,..., we will have to consider the Iimiz*(#llt+l)cxﬂ(z), when u; tends to infinity.
Heret is a non-negative integer dependingoandv only (cf equation (41) below). Then
everything can be proven in the same way as before by using the dual notions.

The dual version of the vertex operator is

_ . 1
D Dyt = A, (X)s, (X + ) : (40)
. u

Setting

‘. i 1 z X+1—u
Os(z,u) = Zri(Z)u = <5v (X+ ; + 1—Z) ,H (]-—Z>> (41)

i=b

and recalling (e.g. from [9, example 5, p 27]) that

for i — oo only one term, namely
(i + 1)
2\ 2

ﬁ(—u)i_rﬁ( ) (42)
-2 -

1 —1+1
dominates and the desired limit (*2" )c,w(z) is

[Ta-*Ja-" A (43)

jz2 j=1

For example, with. := (2, 1) andv := (), we getr := 3,

N Z
n@= G T m e C e

and the desired expansion is
74322+ 8% + 19%% + 412° 4 825 + 15& 7 + 29® + 516° + O(z19).

We can interpret this as follows. The coefficientzéfgives the stable multiplicity of1/1)
in (1) ® {("12‘2) +4, 2, 1} (recall thatr = 3). The coefficient ot* is 19 in accordance with
table 1 above.
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8. Concluding remarks

The computation of branching coefficients Gin) | S,, O(n) | S, andO(n — 1) | S,
plays a key role in symplectic models of nuclei which is a combinatorially explosive
problem. Previous algorithms become computationally impossible when the number of
nucleons becomes large. The algorithms outlined in this paper overcome the limitations
of earlier algorithms and require no use of modification rules. They have the considerable
advantage over other methods of being able to yield specific coefficients rather than the
complete set of coefficients, most of which, in practical calculations, are redundant.

The stability properties of the branching coefficients and inner-plethysm multiplicities
find a natural explanation in terms of generating functions.
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